Shortwave Oscilloclast Pics

Here’s more photos of the actual unit.

Shortwave Oscilloclast No.979

It took me half a day to remove the 50+ years of accumulated crud from the outer case! It turns out the covering isn’t brown at all, but black.

SWO Internal Circuitry

The two power transformers drive the vacuum tube oscillators. The coil and cap on the left generate the shortwave carrier frequency. The row of switches across the top select different resistances to tune the frequencies. On the right is a small electric motor driving a ratchet gear, which rotates to make-and-break the leaf switches attached to it. The tubes are under the row of switches, not visible in this photo.

I realize that what I have here is a very large, very powerful “zapper” device. Using it as described in the manuals is one thing, but I’m thinking now about ways to use it in more purely radionic workings.

I have two outputs to work with: a pulsed electromagnetic “zapper” with its own magnetic platforms, and a shortwave energy transmitter with antenna plates.

Magnetic disks and shortwave contact plates

Under the lid of the device is a compartment to store all of the accessories. It may be possible to use that section for expansion circuitry. The bottom of the compartment lifts completely out to expose the inner components. I could design a panel containing additional circuitry or devices that would install directly into it that space without having to do any actual modifications to the unit (it’s an antique and I’m reluctant to alter it.) If needed, tap into the circuitry with alligator clips. That way, simply remove and unclip the panel, lift it out, put the blank panel back in, and it’s restored to the original.

A witness well could be linked to the tuning coils of the transmitter via induction – I mount the well with its coil positioned above the small Tesla coil in the machine.

One of the test functions is to determine the circuit is plugged in with it’s polarity correct, otherwise the machine won’t work. To test, plug in the power cable, and with the machine turned OFF, touch the metal test button on the front panel. If the polarity is correct the neon bulb will glow. So I tried an experiment with my remote stick pad: I clipped a lead to the button and ran a wire to the pad’s input post, and when I stroked the stick pad, the lamp glowed. This is even though the pad surface is bakelite (under the bakelite is layered a brass plate, a wood plate and a copper bifilar coil – a basic orgone accumulator) the induction from the body’s capacitance is sensed by the Oscilloclast’s circuitry. So, that gives me a stick plate function.

The other thing I want to install is a 1K ohm linear precision potentiometer, in series with the rest of the push-button activated reisitance switches. Each switch has a 1k ohm resistance coil, so each button adds 1k ohms to the circuit’s resistance. But there’s no tuning in-between those 1k values. Add an additional potentiometer, and it spans an extra 1k ohms, which makes it tunable manually. This gives me a tuning system, so with that and the stick-pad I can do scanning with the machine.

Place a witness in the well, and with the power off, stroke the pad while tuning the potentiometer knob (and the neon bulb glows nicely!) Start with the ‘0’ button engaged, and if I don’t get a stick reaction, press the next button and keep scanning. Note where I find the stick reactions, and treat (target) on those frequency rates.

I might just make another loop antenna (a BIG one) for transmitting over distances.

Sounds like work! But it’ll be a lot of fun, and I’ll have a very unique, powerful Radionics machine to work with.

Update: I’ve confirmed that the magnetic pads do generate magnetism (a LOT of magnetism!) and that the shortwave pads transmit a radio signal at 4.1 to 4.3 MHz, carrying an amplitude modulated (AM) audio signal: a simple square-wave “buzz” around 480Hz (probably derived from the 60Hz AC mains frequency.) Luckily, the 4.0 to 4.438 MHz band is assigned (in the US) to marine digital radio (mobile) communications, and I don’t live very near the water. Otherwise I might be broadcasting noise blasts to marine cellphones!

Update 2: A report on the repair and modifications to this machine here and here.

The Shortwave Ocsilloclast and the Hieronymus Analyzer


About josephmax

Aetheric Artist
This entry was posted in Uncategorized. Bookmark the permalink.

6 Responses to Shortwave Oscilloclast Pics

  1. Sorynzar says:

    Incredible device. You have some interesting plans for it, I think the crocodile clip idea is great, considering it is an antique. Would it be possible to use the primary function of the machine i.e the “zapper” system and set it up to use as a remote healing device with the use of a witness well as you suggested?

    • josephmax says:

      Well, both the shortwave function and the magnetic function can operate simultaneously, it’s a matter of what gets plugged into the machine. Charging water with the machine uses only the electrodes for shortwave function, without connecting the disks.

      With the magnetic disks unconnected, there is no “zap” being generated – the magnetic generation coils are inside the disks themselves, the machine only supplies the power and ‘pulses’ it. The manual even lists an accessory “remote power connector” for the disks – you can plug them directly into AC without the machine! (Of course, that means the magnetic field is continuous, not pulsed.)

      So I could use the Oscilloclast for scanning without connecting the disks (which is probably the way to go) and use the disks separately as “zapper” pads when I need them, or at the same time if needed.

  2. Pingback: Oscilloclast Surgery | Aetheric Arts

  3. Avi grossman says:

    I need a price for that machine i have one 1923 OSCILLOCLAST MODEL 986

    • josephmax says:

      As an antique collector once told me, a collectible item is “worth” exactly what a collector will pay for it.

      I bought mine on eBay for $75US plus shipping. It was in fair condition but functional.

      I saw another one recently for $50US but it had no electrodes and the tube valves were missing. See:

      On the Linden Museum site, it says one sold for $250 but it appeared to be in excellent condition. I believe that one was an older model. It used the tubes to provide the “pulse” output characteristic of the Oscilloclast, whereas my unit 979 model uses a mechanical “tick-tock” motor (probably far more reliable.)

      So there’s your range of prices: $50US to $250US.

      • josephmax says:

        Update: I had that backwards. The “tick-tock” is the older version, the newer ones used some kind of switching function of the tube valves to make the pulse. I found mention in an article that the older machines (like mine) with mechanical tick-tocks are considered a better, more effective design. I’m not surprised. No tube switch is going to give as sharp of an on-off pulse the way a mechanical switch can. Tubes have to “ramp” voltage up and down, so they will always “fade” in and out, instead of cutting on and off rapidly.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s